Towards Effective Machine Learning Models for Ransomware Detection via Low-Level Hardware Information

Chutitep Woralert, Chen Liu, Zander Blasingame Clarkson University Potsdam, New York, U.S.A.

HASP 2024

Motivation

- Reported 317.6M ransomware attack in 2023¹
- Many techniques has been developed to fight ransomware
- Neural networks have gained popularity as a detection classifier
- Explore several state of the art models performance in detecting ransomware using low-level hardware information

14 C	Wana	Decrypt0r 2.0	×			
	Ooops, you	Ir files have been encrypted!	English v			
Payment will be raised on	What Happened Your important files ar Many of your documer accessible because the recover your files, but our decryption service Can I Recover M	to My Computer? re encrypted. Its. photos, videos, databases and other files are y have been encrypted. Maybe you are busy look do not waste your time. Nobody can recover you y Files?	no longer ting for a way to ur files without			
5/16/2017 00:47:55 Time Left Ø2: 23: 57: 37	Sure. We guarantee that you can recover all your files safely and easily. But you have not so enough time. You can decrypt some of your files for free. Try now by clicking <decrypt>. But if you want to decrypt all your files, you need to pay. You only have 3 days to submit the payment. After that the price will be doubled. Also, if you don't pay in 7 days, you won't be able to recover your files forever. We will have free events for users who are so poor that they couldn't new in 6 months.</decrypt>					
Your files will be lost on 5/20/2017 00-47:55 Time Left 296 # 23 # 57 # 37	How Do I Pay? Payment is accepted in Please check the currer click <how bitc<br="" buy="" to="">And send the correct an After your payment, cl</how>	Bitcoin only. For more information, click <abon nt price of Bitcoin and buy some bitcoins. For moins>. mount to the address specified in this window. ick <check payment="">. Best time to check: 9:00a</check></abon 	ut bitcoin>. ore information, m - 11:00am			
<u>About bitcoin</u> How to buy bitcoins?	Bitcoin ACCEPTED HERE	Send \$300 worth of bitcoin to this address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMv	: M			
Contact Us	Check Payment		Decrypt			

Screenshot of Wannacry Ransomware Attack

Detection Framework¹

[1] C. Woralert, C. Liu and Z. Blasingame, "HARD-Lite: A Lightweight Hardware Anomaly Realtime Detection Framework Targeting Ransomware," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 12, pp. 5036-5047, Dec. 2023, doi: 10.1109/TCSI.2023.3299532

Data Collection Module

- Collect low-level hardware information from the user machine
- Collect system wide hardware events
- The data is collected periodically as time series format

Classifier Module

- Classification models
 - Time series model
 - Image model
- Input features: 6 Hardware events:
 - Branch retire
 - o Instruction retire
 - Data cache access
 - o Load
 - o Store
 - Last level cache miss
- Perform online analysis on the data from the data collection module

Neural Network Models

- Long-short term Memory (LSTM)
- Convolutional Neural Networks (CNNs)
- The Multilayer Perceptron (MLP)

Gradient Boosting Models

- eXtreme Gradient Boosting (XGBoost)
- Light Gradient Boosting Machine (LightGBM)

Experiment Setup

- Perform experiment on user machine with regular workloads
- Deploy data collection module to collects hardware events on the user machine
- Deploy classification module that processes the information received from the user machine
- Deploy ransomware attack on the user machine then monitor the

classification result

Classification Results (Window size = 50)

Model/Dataset	Time Series Data			Image Data				
Window size 50	Accuracy	Precision	Recall	F1 Score	Accuracy	Precision	Recall	F1 Score
LSTM	97.05	98.77	95.27	96.99	N/A	N/A	N/A	N/A
XGBoost	99.81	99.93	99.70	99.81	99.73	99.93	99.53	99.73
LightGBM	99.77	99.89	99.65	99.77	99.78	99.95	99.61	99.78
MLP	98.41	99.07	99.07	98.73	99.40	99.31	99.49	99.40
CNN	97.94	97.43	98.56	97.97	99.91	99.93	99.89	99.91

Classification Results (Window size = 1000)

Model/Dataset	Time Series Data			Image Data				
Window size 1000	Accuracy	Precision	Recall	F1 Score	Accuracy	Precision	Recall	F1 Score
LSTM	98.50	99.65	97.30	98.46	N/A	N/A	N/A	N/A
XGBoost	99.96	99.99	99.93	99.96	99.95	99.99	99.91	99.95
LightGBM	99.97	100	99.95	99.97	99.95	99.99	99.91	99.95
MLP	99.24	99.29	99.20	99.23	99.92	99.95	99.90	99.92
CNN	99.24	99.02	99.47	99.25	99.98	99.99	99.96	99.98

Deployment Resource Requirement

- Time requirement to process the data
- Prediction time requirement for classifier model
- Model memory usage during deployment

Classification Model	Data Processing (s)	Predict time (s)	Memory Usage (MB)	
Window size 1000				
LGBM(TS)	0.051	0.007	413	
XGBoost(TS)	0.048	0.015	434	
LGBM(IMG)	0.341	0.038	452	
MLP(IMG)	0.317	0.052	572	
XGBoost(IMG)	0.305	0.053	452	
CNN(IMG)	0.312	0.059	935	
MLP(TS)	0.050	0.061	536	
CNN(TS)	0.050	0.062	629	
LSTM(TS)	0.050	0.607	828	

Model Performance vs Efficiency (Window size = 1000)

Model Performance vs Efficiency (50, 100, 500, 1000 window

Conclusion

- Explore state of the art models for ransomware detection using lowlevel hardware information
- Compare detection performance vs deployment cost
- CNN and gradient boosting model show exceptional detection capability
- LightGBM is the most efficient model interm of deployment cost for deployment

Q&A scted ne 8-c+ 37 ** 3.315. 7+4:87 Protected